Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.267
Filter
1.
PLoS One ; 19(5): e0301082, 2024.
Article in English | MEDLINE | ID: mdl-38722977

ABSTRACT

Branching morphogenesis is a complex process shared by many organs including the lungs, kidney, prostate, as well as several exocrine organs including the salivary, mammary and lacrimal glands. This critical developmental program ensures the expansion of an organ's surface area thereby maximizing processes of cellular secretion or absorption. It is guided by reciprocal signaling from the epithelial and mesenchymal cells. While signaling pathways driving salivary gland branching morphogenesis have been relatively well-studied, our understanding of the underlying transcriptional regulatory mechanisms directing this program, is limited. Here, we performed in vivo and ex vivo studies of the embryonic mouse submandibular gland to determine the function of the transcription factor ΔNp63, in directing branching morphogenesis. Our studies show that loss of ΔNp63 results in alterations in the differentiation program of the ductal cells which is accompanied by a dramatic reduction in branching morphogenesis that is mediated by dysregulation of WNT signaling. We show that ΔNp63 modulates WNT signaling to promote branching morphogenesis by directly regulating Sfrp1 expression. Collectively, our findings have revealed a novel role for ΔNp63 in the regulation of this critical process and offers a better understanding of the transcriptional networks involved in branching morphogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Membrane Proteins , Morphogenesis , Animals , Mice , Morphogenesis/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Salivary Glands/metabolism , Salivary Glands/embryology , Wnt Signaling Pathway , Submandibular Gland/metabolism , Submandibular Gland/embryology , Trans-Activators/metabolism , Trans-Activators/genetics , Cell Differentiation
2.
Sci Rep ; 14(1): 10855, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740782

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease that can compromise the functioning of various organs, including the salivary glands (SG). The purinergic system is one of the most important inflammatory pathways in T2DM condition, and P2X7R and P2X4R are the primary purinergic receptors in SG that regulate inflammatory homeostasis. This study aimed to evaluate P2X7R and P2X4R expression, and morphological changes in the submandibular gland (SMG) in T2DM. Twenty-four 5-week-old mice were randomly assigned to control (CON) and diabetes mellitus (DM) groups (n = 12 each). Body weight, diet, and blood glucose levels were monitored weekly. The histomorphology of the SMG and the expression of the P2X7R, and P2X7R was evaluated by immunohistochemistry (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) at 11 and 13 weeks of age. Our findings indicate a significant increase in food consumption, body weight, and blood glucose levels in the DM group. Although a significant increase in P2X7R and P2X4R expression was observed in the DM groups, the receptor location remained unchanged. We also observed a significant increase in the acinar area in the DM13w group, and a significant decrease in the ductal area in the DM11w and DM13w groups. Targeting purinergic receptors may offer novel therapeutic methods for diabetic complications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Submandibular Gland , Animals , Submandibular Gland/metabolism , Submandibular Gland/pathology , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Blood Glucose/metabolism , Body Weight , Streptozocin , Mice, Inbred C57BL
3.
In Vitro Cell Dev Biol Anim ; 60(4): 411-419, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587579

ABSTRACT

Sjogren's syndrome (SS) is an autoimmune disease. Its mechanism and treatment methods are unclear. The purpose of this study was to investigate the effects of rutin (Ru) on SS. Proteomics was used to detect differential proteins in the submandibular glands of normal mice and SS mice. Salivary secretion (SAS) and salivary gland index (SGI) were detected. Oxidative stress and inflammatory cytokine in submandibular glands were detected. The levels of NLRP3, ASC, Caspase-1, IL-1ß, and p-NF-κBp65 in submandibular gland tissues and submandibular gland cells of overexpressed calcium-sensing receptor (over-CaR) mice and overexpressed CaR primary submandibular gland cells (over-CaR-PSGs) were detected. In total, 327 differential proteins were identified in the submandibular gland tissues of SS mice compared to control mice. CaR was one of the most differential proteins and significantly increased compared to control mice. Ru could significantly increase SGI and SGI, and inhibit oxidative stress and inflammatory cytokine in submandibular glands. In addition, Ru was shown to further improve SS via regulation of the CaR/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/nuclear factor kappa-B (NF-κB) signal pathway. Overexpression of CaR counteracted partial activity of Ru. CaR may be an important target for the treatment of SS. In addition, Ru improved the SS via the CaR/NLRP3/NF-κB signal pathway. This study provides a basis for the treatments for SS.


Subject(s)
NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rutin , Signal Transduction , Sjogren's Syndrome , Submandibular Gland , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Rutin/pharmacology , Rutin/therapeutic use , Mice , Submandibular Gland/metabolism , Submandibular Gland/drug effects , Submandibular Gland/pathology , Oxidative Stress/drug effects , Female , Cytokines/metabolism , Mice, Inbred C57BL
4.
Exp Cell Res ; 436(2): 113954, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38307188

ABSTRACT

The trafficking of aquaporin 5 (AQP5) is critical for salivary secretion. Synaptosomal-associated protein 23 (SNAP23) is an important regulator in the process of membrane fusion. However, the role of SNAP23 on AQP5 trafficking has not been explored. Botulinum toxin type A (BoNT/A) is a bacterial toxin that effectively treats sialorrhea. We previously reported that BoNT/A induced AQP5 redistribution in cultured acinar cells, but the mechanism remained unclear. In this study, SNAP23 was predominantly localized to the plasma membrane of acinar cells in the rat submandibular gland (SMG) and colocalized with AQP5 at the apical membrane of acinar cells. In stable GFP-AQP5-transfected SMG-C6 cells, the acetylcholine receptor agonist carbachol (CCh) induced trafficking of AQP5 from intracellular vesicles to the apical membrane. Furthermore, SNAP23 knockdown by siRNA significantly inhibited CCh-induced AQP5 trafficking, whereas this inhibitory effect was reversed by SNAP23 re-expression, indicating that SNAP23 was essential in AQP5 trafficking. More importantly, BoNT/A inhibited salivary secretion from SMGs, and the underlying mechanism involved that BoNT/A blocked CCh-triggered AQP5 trafficking by decreasing SNAP23 in acinar cells. Taken together, these results identified a crucial role for SNAP23 in AQP5 trafficking and provided new insights into the mechanism of BoNT/A in treating sialorrhea and thereby a theoretical basis for clinical applications.


Subject(s)
Botulinum Toxins, Type A , Sialorrhea , Rats , Animals , Botulinum Toxins, Type A/pharmacology , Botulinum Toxins, Type A/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Acinar Cells , Sialorrhea/metabolism , Submandibular Gland/metabolism
5.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 110-118, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372104

ABSTRACT

The salivary gland (SGS) is a kind of organ vulnerable to ionizing radiation. Radiotherapy is an important treatment for head and neck tumors, but in the process of radiotherapy, tumor cells will be injured by radiation to a certain extent. Infrared-induced DNA double-strand break (IR-DSBs) is one of the most serious DNA damage. DNA repair proteins such as Nymegan rupture syndrome protein 1 (NBS1) play a key role in the identification and repair of DNA damage. but the interaction between SSB1 and NBS1 has not been elucidated. In this study, we irradiated rat submandibular gland (SMG) cells, which were either infected with a rAdE5-SSB1-1p2-shRNA recombinant adenovirus to silence SSB or a control virus, to explore the effect of IR on the expression NBS1 in the absence of SSB. Our results showed that the SSB1 mRNA transcripts and protein expression of SSB1 and NBS1 initially increased and decreased later with increased doses. The relative expression reached the highest levels when the SMG cells were irradiated with 2Gy of IR. Silencing the SSB1 gene suppressed the expression of both SSB1 and NBS1 regardless of irradiation. The expression of NBS1 decreased when the SSB1 gene was silenced. We concluded that IR affected the expression of both SSB1 and NBS1 and there is a synergistic effect on IR-induced NBS1 suppression and DSBs repair in SMG cells. These observations shed light on further investigation and elucidation of IR-caused DNA repair mechanisms.


Subject(s)
Cell Cycle Proteins , Nuclear Proteins , Submandibular Gland , Animals , Rats , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Damage , DNA Repair/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Submandibular Gland/metabolism
6.
BMC Pharmacol Toxicol ; 25(1): 22, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414079

ABSTRACT

BACKGROUND: Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS: Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS: In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1ß and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1ß, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS: In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.


Subject(s)
Hesperidin , Iron Overload , Rats , Male , Animals , Hesperidin/pharmacology , Hesperidin/therapeutic use , Rutin/pharmacology , Rutin/therapeutic use , Rutin/metabolism , Rats, Wistar , Submandibular Gland/metabolism , NF-kappa B/metabolism , Gamma Rays/adverse effects , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Iron Overload/drug therapy , Iron Overload/metabolism , Superoxide Dismutase/metabolism , TOR Serine-Threonine Kinases/metabolism , Iron/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress
7.
Photobiomodul Photomed Laser Surg ; 42(2): 159-167, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38301211

ABSTRACT

Objective: The submandibular gland (SMG) produces the most saliva, and factors such as aging and chemotherapy can affect its structure and function. However, there are only temporary treatments available for salivary hypofunction. This study aimed to evaluate the effects of photobiomodulation (PBM) on the function of SMG by using a rat animal model and vismodegib, an antagonist of the sonic hedgehog (SHH) pathway. Methods: Vismodegib (10 mg/kg) drug was gavaged orally for 14 days in rats to significantly decrease the SHH signaling proteins [SHH, protein patched homolog 1 (PTCH1), smoothened protein (SMO), glioma-associated oncogene homolog 1 (GLI1)], induce damage in SMG tissue, and affect salivary functional markers AQP5 and Keratin5. After that, in conjunction with vismodegib administration, PBM was performed using an 850 nm high-power light-emitting diode (LED) device treated daily for 6 days at varying total energy densities of 60, 120, and 180 J/cm2 in at least 3 rats per group. The test results were confirmed by Western blot, immunofluorescence staining, and hematoxylin and eosin staining, and the statistics were t-test or one-way analysis of variance (ANOVA) with Tukey's multiple comparisons tests. Results: Significant decreases in the expression of SHH-related proteins (PTCH1, SMO, GLI1, p < 0.05) with damage of SMG ductal cells were observed with vismodegib administration. However, a significant increase in the expression levels of SHH-related proteins (SHH, SMO, GLI1, p < 0.05) and recovery of SMG ductal cells damaged after vismodegib administration were observed for PBM-treated groups. Salivary functional marker AQP5 also showed the same increase or decrease. Conclusions: This study found that vismodegib damages SMG ductal cells and decreases SHH-related proteins and associated salivary functional markers. Also, 850 nm high-power LED recovered the damaged structure of SMG and increased SHH-related proteins and salivary functional markers. The study results suggest that PBM can restore SMG structure and function through SHH signaling.


Subject(s)
Anilides , Low-Level Light Therapy , Pyridines , Submandibular Gland , Rats , Animals , Submandibular Gland/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/pharmacology , Signal Transduction
8.
Am J Physiol Cell Physiol ; 326(3): C742-C748, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38284125

ABSTRACT

The key role of CFTR in secretory epithelia has been extensively documented. Additionally, CFTR plays a significant role in ion absorption in exocrine glands, including salivary and sweat glands. Most of the knowledge about CFTR expression comes from animal models such as the mouse or the rat, but there is limited information about CFTR expression in human tissues. In the present study, we assessed the expression of CFTR in human submandibular and parotid glands. Consistent with findings in rodent salivary glands, our immunolocalization studies show that CFTR is expressed in duct cells. However, CFTR expression in human salivary glands differs from that in rodents, as immunolocalization and single-cell RNA sequencing analysis from a previous study performed in the human parotid gland revealed the presence of CFTR protein and transcripts within a distinct cell cluster. Based on cell marker expression, this cluster corresponds to acinar cells. To obtain functional evidence supporting CFTR expression, we isolated human parotid acinar cells through collagenase digestion. Acinar cells displayed an anion conductance that was activated in response to cAMP-increasing agents and was effectively blocked by CFTRInh172, a known CFTR blocker. This study provides novel evidence of CFTR expression within acinar cells of human salivary glands. This finding challenges the established model positioning CFTR exclusively in duct cells from exocrine glands.NEW & NOTEWORTHY This study addresses the uncertainty about the impact of CFTR on human salivary gland function. We found CFTR transcripts in a subset of duct cells known as ionocytes, as well as in acinar cells. Isolated human parotid acinar cells exhibited Cl- conductance consistent with CFTR activity. This marks the first documented evidence of functional CFTR expression in human salivary gland acinar cells.


Subject(s)
Acinar Cells , Cystic Fibrosis Transmembrane Conductance Regulator , Humans , Rats , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Salivary Glands/metabolism , Submandibular Gland/metabolism , Parotid Gland/metabolism
9.
Sci Rep ; 14(1): 1069, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212454

ABSTRACT

Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.


Subject(s)
Salivary Gland Neoplasms , Transcription Factors , Animals , Mice , Ectodysplasins/genetics , Epithelial Cells/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Salivary Gland Neoplasms/metabolism , Submandibular Gland/metabolism , Transcription Factors/metabolism , Xedar Receptor/metabolism
10.
Odontology ; 112(1): 83-90, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37002433

ABSTRACT

Salivary gland hypofunction adversely affects the oral environment and daily life by causing dry mouth (xerostomia). Senescence-related atrophy of salivary gland tissues is one cause of xerostomia, and it is particularly common among the elderly. However, the underlying mechanism is poorly understood, and no treatment has been established. Therefore, we examined age-related changes in senescence-associated secretory phenotype (SASP) factors, which regulate stemness and cellular senescence, in mouse submandibular glands. We analyzed the submandibular glands of 6-week-old (young group, n = 6) and 82-week-old mice (aged group, n = 6). We performed salivary flow rate measurements, histological analysis including immunohistochemistry, and quantitative real-time PCR. The salivary flow rate was significantly lower in the aged group than in the young group. In addition, immunostaining and quantitative real-time PCR illustrated that aquaporin-5 and α-amylase expressions were significantly decreased in aged mice, indicating salivary gland hypofunction. c-Kit and cytokeratin 5 expressions were also significantly decreased in this group, suggesting that the regenerative abilities of the submandibular glands were reduced because of decreased stem and progenitor cell counts. Furthermore, the levels of p16INK4a and p21 (the senescence markers) and TGF-ß1 and IL-6 (SASP factors) were significantly increased in mice, suggesting that senescence had been promoted. The decreased numbers of stem and progenitor cells and increased levels of SASP factors might be associated with age-related changes in mouse submandibular glands. These results might facilitate the development of treatments for senescence-related submandibular gland hypofunction.


Subject(s)
Submandibular Gland , Xerostomia , Humans , Aged , Mice , Male , Animals , Submandibular Gland/metabolism , Submandibular Gland/pathology , Cellular Senescence , Stem Cells
11.
J Dent Res ; 103(2): 167-176, 2024 02.
Article in English | MEDLINE | ID: mdl-38058154

ABSTRACT

Tight junction proteins play a crucial role in paracellular transport in salivary gland epithelia. It is clear that severe xerostomia in patients with HELIX syndrome is caused by mutations in the claudin-10 gene. However, little is known about the expression pattern and role of claudin-10 in saliva secretion in physical and disease conditions. In the present study, we found that only claudin-10b transcript was expressed in human and mouse submandibular gland (SMG) tissues, and claudin-10 protein was dominantly distributed at the apicolateral membranes of acini in human, rat, and mouse SMGs. Overexpression of claudin-10 significantly reduced transepithelial electrical resistance and increased paracellular transport of dextran and Na+ in SMG-C6 cells. In C57BL/6 mice, pilocarpine stimulation promoted secretion and cation concentration in saliva in a dose-dependent increase. Assembly of claudin-10 to the most apicolateral portions in acini of SMGs was observed in the lower pilocarpine (1 mg/kg)-treated group, and this phenomenon was much obvious in the higher pilocarpine (10 mg/kg)-treated group. Furthermore, 7-, 14-, and 21-wk-old nonobese diabetic (NOD) and BALB/c mice were used to mimic the progression of hyposalivation in Sjögren syndrome. Intensity of claudin-10 protein was obviously lower in SMGs of 14- and 21-wk-old NOD mice compared with that of age-matched BALB/c mice. In the cultured mouse SMG tissues, interferon-γ (IFN-γ) downregulated claudin-10 expression. In claudin-10-overexpressed SMG-C6 cells, paracellular permeability was decreased. Furthermore, IFN-γ stimulation increased p-STAT1 level, whereas pretreatment with JAK/STAT1 antagonist significantly alleviated the IFN-γ-induced claudin-10 downregulation. These results indicate that claudin-10 functions as a pore-forming component in acinar epithelia of SMGs, assembly of claudin-10 is required for saliva secretion, and downregulation of claudin-10 induces hyposecretion. These findings may provide new clues to novel therapeutic targets on hyposalivation.


Subject(s)
Sjogren's Syndrome , Xerostomia , Humans , Mice , Rats , Animals , Submandibular Gland/metabolism , Pilocarpine/metabolism , Mice, Inbred C57BL , Claudins/metabolism , Tight Junctions/metabolism , Xerostomia/etiology , Claudin-4/metabolism
12.
J Anat ; 244(2): 343-357, 2024 02.
Article in English | MEDLINE | ID: mdl-37837237

ABSTRACT

Tlx1 encodes a transcription factor expressed in several craniofacial structures of developing mice. The role of Tlx1 in salivary gland development was examined using morphological and immunohistochemical analyses of Tlx1 null mice. Tlx1 is expressed in submandibular and sublingual glands but not parotid glands of neonatal and adult male and female C57Bl/6J (Tlx1+/+ ) mice. TLX1 protein was localized to the nuclei of terminal tubule cells, developing duct cells and mesenchymal cells in neonatal submandibular and sublingual glands, and to nuclei of duct cells and connective tissue cells in adult glands. Occasionally, TLX1 was observed in nuclei of epithelial cells in or adjacent to the acini. Submandibular glands were smaller and sublingual glands were larger in size in mutant mice (Tlx1-/- ) compared to wild-type mice. Differentiation of terminal tubule and proacinar cells of neonatal Tlx1-/- submandibular glands was abnormal; expression of their characteristic products, submandibular gland protein C and parotid secretory protein, respectively, was reduced. At 3 weeks postnatally, terminal tubule cells at the acinar-intercalated duct junction were poorly developed or absent in Tlx1-/- mice. Granular convoluted ducts in adult mutant mice were decreased, and epidermal growth factor and nerve growth factor expression were reduced. Along with normal acinar cell proteins, adult acinar cells of Tlx1-/- mice continued to express neonatal proteins and expressed parotid proteins not normally present in submandibular glands. Sublingual gland mucous acinar and serous demilune cell differentiation were altered. Tlx1 is necessary for proper differentiation of submandibular and sublingual gland acinar cells, and granular convoluted ducts. The mechanism(s) underlying Tlx1 regulation of salivary gland development and differentiation remains unknown.


Subject(s)
Sublingual Gland , Submandibular Gland , Mice , Animals , Male , Female , Submandibular Gland/metabolism , Sublingual Gland/chemistry , Sublingual Gland/metabolism , Parotid Gland/metabolism , Epidermal Growth Factor/metabolism , Nerve Growth Factors/metabolism , Homeodomain Proteins/metabolism
13.
Radiat Res ; 201(1): 77-86, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38044712

ABSTRACT

Inflammatory response is one of the essential parts of various pathogenic mechanisms of radiation-induced salivary dysfunction. The effect of decreasing the levels of inflammatory cytokines on alleviating submandibular gland injuries after irradiation is unclear. This study aimed to explore the effect of the antibody against tumor necrosis factor-alpha, infliximab, on radiation-induced submandibular gland dysfunction in rats. Male Wistar rats received a single 20 Gy dose to the right submandibular gland region or sham irradiated. Meanwhile, the irradiated group was divided into infliximab treatment groups or untreated groups. Animals were euthanized at 1, 6, and 12 weeks postirradiation, and the irradiated submandibular gland was dissected for subsequent detection. Submandibular gland exposure caused obvious pathological changes. The increased levels of inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6, represent an aggravated inflammatory response. The results of the western blot, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence staining showed upregulated levels of claudin-1, claudin-3, and aquaporin 5 and downregulated levels of claudin-4. Moreover, nuclear factor kappa-B phosphorylation levels were also up-regulated. In subsequent experiments, we found that infliximab alleviated inflammatory response, up-regulated tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6 levels, and improved claudin-1, claudin-3, claudin-4, and aquaporin 5 expression. Our results indicate that infliximab might improve the para-cellular pathway and trans-cellular pathway destruction by reducing the inflammatory.


Subject(s)
Submandibular Gland , Tumor Necrosis Factor-alpha , Rats , Male , Animals , Rats, Wistar , Infliximab/pharmacology , Infliximab/therapeutic use , Infliximab/metabolism , Tumor Necrosis Factor-alpha/metabolism , Submandibular Gland/metabolism , Submandibular Gland/pathology , Aquaporin 5/metabolism , Claudin-3/metabolism , Claudin-1/metabolism , Claudin-4/metabolism , Interleukin-1beta , Interleukin-6
14.
J Anat ; 244(5): 873-881, 2024 May.
Article in English | MEDLINE | ID: mdl-38111134

ABSTRACT

OBJECTIVES: The presence of prostate-specific antigen (PSA) in saliva and salivary glands has been reported. Nevertheless, its release pathway in these glands remains to be elucidated. Here, we showed PSA subcellular distribution focusing on its plausible route in human salivary parenchyma. MATERIALS AND METHODS: Sections of parotid and submandibular glands were subjected to the immunohistochemical demonstration of PSA by the streptavidin-biotin method revealed by alkaline phosphatase. Moreover, ultrathin sections were collected on nickel grids and processed for immunocytochemical analysis, to visualize the intracellular distribution pattern of PSA through the observation by transmission electron microscopy. RESULTS: By immunohistochemistry, in both parotid and submandibular glands PSA expression was detected in serous secretory acini and striated ducts. By immunocytochemistry, immunoreactivity was retrieved in the cytoplasmic compartment of acinar and ductal cells, often associated with small cytoplasmic vesicles. PSA labeling appeared also on rough endoplasmic reticulum and in the acini's lumen. A negligible PSA labeling appeared in most of the secretory granules of both glands. CONCLUSIONS: Our findings clearly support that human parotid and submandibular glands are involved in PSA secretion. Moreover, based on the immunoreactivity pattern, its release in oral cavity would probably occur by minor regulated secretory or constitutive-like secretory pathways.


Subject(s)
Prostate-Specific Antigen , Salivary Glands , Humans , Male , Immunohistochemistry , Parotid Gland/ultrastructure , Prostate-Specific Antigen/metabolism , Salivary Glands/ultrastructure , Submandibular Gland/metabolism
15.
Inflammopharmacology ; 32(2): 1113-1131, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38114798

ABSTRACT

BACKGROUND: Sjögren's Syndrome (SS) is also known as autoimmune exocrine gland disease. Previous studies have confirmed that adaptive immunity plays an important role in the development of this disease. But less is known about the role of the innate immune system. METHODS: To identify the core pathways, and local infiltrated immune cells in the local immune microenvironment of SS. We verified the activation of these core genes and core signaling pathways in SS model mice by in vivo experiment and transcriptome sequencing. RESULTS: Finally, we identified 6 core genes EPSTI1, IFI44L, MX1, CXCL10, IFIT3, and IFI44. All the 6 genes had good diagnostic value. Based on multi-omics sequencing results and experimental studies, we found that cGAS-STING signaling pathway is most relevant to the pathogenesis of SS. By in vivo experiments, we verified that autophagy is the key brake to limit the activation of cGAS-STING signaling pathway. CONCLUSIONS: Maladaptive activation of autophagy and cGAS-STING signaling pathway are central contributors to the SG pathogenesis of pSS patient. Regulating autophagy by rapamycin may be a possible treatment for Sjögren's syndrome in the future.


Subject(s)
Autoimmune Diseases , Sjogren's Syndrome , Humans , Mice , Animals , Sjogren's Syndrome/drug therapy , Submandibular Gland/metabolism , Submandibular Gland/pathology , Sirolimus , Signal Transduction , Nucleotidyltransferases/metabolism
16.
J Oral Biosci ; 66(1): 82-89, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38142941

ABSTRACT

OBJECTIVES: Aging-related salivary gland changes, such as lymphocyte infiltration and acinar cell loss decrease saliva secretion, thereby affecting quality of life. The precise molecular mechanisms underlying these changes remain unclear. METHODS: We here performed single-cell RNA sequencing to clarify gene expression changes in each cell type comprising the submandibular glands (SMGs) of adult and aged mice. RESULTS: The proportion of acinar cells decreased in various epithelial clusters annotated with cell type-specific marker genes. Expression levels of the cellular senescence markers, Cdkn2a/p16 and Cdkn1a/p21, were increased in the basal and striated ducts of aged SMGs relative to their levels in those of adult SMGs. In contrast, senescence-associated secretory phenotype-related genes, except transforming growth factor-ß, exhibited little change in expression in aged SMGs relative to adult SMGs. CONCLUSIONS: Gene Ontology analysis revealed increased expression levels of genes encoding major histocompatibility complex (MHC) class I components in the ductal component cells of aged SMGs. MHC class I expression may thus be associated with salivary gland aging.


Subject(s)
Quality of Life , Submandibular Gland , Mice , Animals , Submandibular Gland/metabolism , Salivary Glands/metabolism , Cellular Senescence , Single-Cell Analysis
17.
Oral Dis ; 30(1): 3-22, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36825434

ABSTRACT

Tight junctions (TJs) are cell-cell interactions that localize at the most apical portion of epithelial/endothelial cells. One of the predominant functions of TJs is to regulate material transport through paracellular pathway, which serves as a selective barrier. In recent years, the expression and function of TJs in salivary glands has attracted great interest. The characteristics of multiple salivary gland TJ proteins have been identified. During salivation, the activation of muscarinic acetylcholine receptor and transient receptor potential vanilloid subtype 1, as well as other stimuli, promote the opening of acinar TJs by inducing internalization of TJs, thereby contributing to increased paracellular permeability. Besides, endothelial TJs are also redistributed with leakage of blood vessels in cholinergic-stimulated submandibular glands. Furthermore, under pathological conditions, such as Sjögren's syndrome, diabetes mellitus, immunoglobulin G4-related sialadenitis, and autotransplantation, the integrity and barrier function of TJ complex are impaired and may contribute to hyposalivation. Moreover, in submandibular glands of Sjögren's syndrome mouse model and patients, the endothelial barrier is disrupted and involved in hyposecretion and lymphocytic infiltration. These findings enrich our understanding of the secretory mechanisms that link the importance of epithelial and endothelial TJ functions to salivation under both physiological and pathophysiological conditions.


Subject(s)
Sialorrhea , Sjogren's Syndrome , Mice , Animals , Humans , Tight Junctions/metabolism , Tight Junctions/pathology , Sjogren's Syndrome/pathology , Endothelial Cells , Salivary Glands/pathology , Saliva/metabolism , Submandibular Gland/metabolism
18.
Oral Dis ; 30(1): 50-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37518974

ABSTRACT

AIM: The aim of the study was to observe the effect of acupuncture on regulating interleukin (IL)-17, tumor necrosis factor (TNF)-ɑ, and aquaporins (AQPs) in Sjögren's syndrome (SS) on patients and on non-obese diabetic (NOD) models. METHODS: Levels of anti-AQP 1, 5, 8, and 9 antibodies, IL-17, and TNF-ɑ in the serum of SS patients were compared prior and following 20 acupuncture treatment visits during 8 weeks. While in murine model, five groups were divided to receive interventions for 4 weeks, including control, model, acupuncture, isoflurane, and hydroxychloroquine. The submaxillofacial gland index, histology, immunohistochemistry of AQP1, 5, salivary flow, together with IL-17, and TNF-ɑ expression in peripheral blood were compared among the groups. RESULTS: Acupuncture reduced IL-17, TNF-ɑ, and immunoglobin A levels, and numeric analog scale of dryness in 14 patients with SS (p < 0.05). The salivary flow was increased, and the water intake decreased in NOD mice receiving acupuncture treatments. IL-17 and TNF-ɑ levels in peripheral serum were down-regulated (p < 0.05) and AQP1, 5 expression in the submandibular glands up-regulated in mice. CONCLUSION: The effect on relieving xerostomia with acupuncture may be achieved by up-regulating the expression of AQP1. AQP5, down-regulating levels of IL-17 and TNF-ɑ, and a decrease in inflammation of glands.


Subject(s)
Acupuncture Therapy , Sjogren's Syndrome , Humans , Animals , Mice , Sjogren's Syndrome/pathology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-17/metabolism , Mice, Inbred NOD , Submandibular Gland/metabolism , Disease Models, Animal
19.
Sci Rep ; 13(1): 18205, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875724

ABSTRACT

Non-obese diabetic (NOD) mice were taken as primary Sjögren's syndrome (pSS) model mice to examine the therapeutic impact of iguratimod (IGU) on inflammatory factors levels and apoptosis of submandibular epithelial cells, and provide experimental basis for the treatment of pSS by iguratimod. Twenty-four NOD murine models were divided into the model, high-dose (IGU 30 mg/kg) and low-dose (IGU 10 mg/kg) groups, eight mice per group. The normal control group comprised eight C57B/L mice. From 8 weeks of age, the NOD mice were administered IGU by intragastric gavage administration every day for 8 weeks; their water consumption, saliva secretion, submandibular gland, and spleen indices were measured. The levels of serum inflammatory factor (IL-1ß, TNF-α, IL-6, and IL-17) were evaluated, and Bax, caspase-3, and Bcl-2 levels were detected. The histological alterations in the submandibular glands were discovered. IGU can reduce the water intake of NOD mice (p < 0.01), increase the saliva secretion and the submandibular gland index (p < 0.01); reduce the spleen index and the serum inflammatory factors (p < 0.01); improve the pathological tissue damage and cell apoptosis of the submandibular gland (p < 0.05). IGU can reduce the expression levels of inflammatory mediators in the serum and the extent of lymphocyte infiltration and apoptosis in submandibular gland epithelial cells. It can also regulate apoptosis-related protein expression, thereby improving the secretory function of exocrine glands.


Subject(s)
Sjogren's Syndrome , Submandibular Gland , Mice , Animals , Mice, Inbred NOD , Submandibular Gland/metabolism , Sjogren's Syndrome/pathology , Inflammation/pathology , Apoptosis , Disease Models, Animal
20.
Arch Oral Biol ; 155: 105805, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741048

ABSTRACT

OBJECTIVE: To investigate the effects of the anticonvulsant valproic acid (VPA) on salivary glands in male rat using biochemical, functional, histomorphometric, and redox state parameters. MATERIALS AND METHODS: Twenty-four male Wistar rats were randomly distributed into three groups (n = 8 per group): Control (0.9% saline solution), VPA100 (100 mg/kg), and VPA400 (400 mg/kg). After 21 consecutive days of treatment with by intragastric gavage. Pilocarpine-induced saliva was collected to determine salivary flow rate, pH, buffering capacity, and biochemical composition. Analyses of histomorphometric parameters and redox balance markers were performed on the parotid and submandibular glands. RESULTS: Salivary flow rate, pH, buffering capacity, total protein, potassium, sodium, and chloride were similar between groups. However, phosphate and calcium were reduced in VPA400, while amylase was increased in both VPA100 and VPA400. We did not detect significant differences in the areas of acini, ducts, and connective tissue in the salivary glands between the groups. There were no significant changes in the redox status of the submandibular glands. In turn, in the parotid glands we detected reduced total oxidizing capacity and lipid peroxidation, measured as thiobarbituric acid reactive substances (TBARs) and higher uric acid concentration in both the VPA100 and VPA400 groups, and increased superoxide dismutase (SOD) in the VPA400 group. CONCLUSION: Chronic treatment with VPA modified the salivary biochemical composition and caused disruption in the redox state of the parotid gland in rats.


Subject(s)
Anticonvulsants , Valproic Acid , Rats , Male , Animals , Anticonvulsants/pharmacology , Valproic Acid/pharmacology , Valproic Acid/analysis , Valproic Acid/metabolism , Rats, Wistar , Salivary Glands/metabolism , Saliva/chemistry , Parotid Gland/metabolism , Submandibular Gland/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...